Чтение онлайн

на главную - закладки

Жанры

Курс теоретической астрофизики
Шрифт:

Найдём зависимость температуры от оптической глубины в данном случае. Для этого мы должны воспользоваться уравнением переноса излучения в форме (1.20). Проинтегрировав это уравнение по всем частотам, получаем

cos

I

r

sin

r

I

r

=-

I

+

,

(7.1)

где — средний коэффициент поглощения. Обозначая, как обычно, =S, в качестве условия лучистого равновесия имеем

S

=

I

d

4

.

(7.2)

Интегрирование (7.1)

по всем направлениям при учёте (7.2) приводит к формуле

H

=

C

r^2

,

(7.3)

где C — некоторая постоянная. (Очевидно, что 4C есть светимость звезды.)

Умножая (7.1) на cos и интегрируя по всем направлениям, в приближении Эддингтона находим

4

3

dS

dr

=-

H

,

(7.4)

или, на основании (4.15),

ac

3

dT

dr

=-

H

.

(7.5)

Для коэффициента поглощения возьмём выражение

~

^2

Ts

(7.6)

[сравните с формулами (5.35) и (5.36)] и допустим, что плотность в фотосфере обратно пропорциональна некоторой степени расстояния от центра звезды, т.е.

~

1

rn

.

(7.7)

Подставляя (7.3), (7.6) и (7.7) в уравнение (7.5) и интегрируя его, получаем

T

=

T

r

r

2n+1

4+s

,

(7.8)

где T — температура на расстоянии r.

Пользуясь формулами (7.7) и (7.8), можно также легко получить зависимость оптической глубины от расстояния r. Подстановка указанных формул в соотношение d=- dr и интегрирование даёт

=

r

r

2

4n-s-2

4+s

(7.9)

где под r теперь понимается расстояние от центра звезды при =1. Из (7.8) и (7.9) получаем искомую зависимость T от :

T

=

T

2n+1

2(4n-s-2)

.

(7.10)

Возьмём, например, n=2 и s=4. Тогда имеем

T

=

T

5/4

.

(7.11)

Таким образом, в протяжённой фотосфере температура возрастает с оптической глубиной гораздо быстрее, чем в фотосфере, состоящей из плоскопараллельных слоёв.

Знание зависимости T от =1 даёт возможность вычислить распределение энергии в непрерывном спектре

звезды. Для этого надо воспользоваться уравнением переноса излучения (1.20), положив в нём, на основании гипотезы о локальном термодинамическом равновесии, =B(T). Первоначально в теории протяжённых фотосфер принималось, что коэффициент поглощения не зависит от частоты. В таком случае кривая распределения энергии в непрерывном спектре звезды получалась очень сильно отличающейся от планковской кривой — с большим избытком излучения в ультрафиолетовой части спектра. Однако при учёте зависимости коэффициента поглощения от частоты указанного избытка излучения не получается вследствие сильного поглощения за границами основных серий атомов. Следует также иметь в виду, что в протяжённых фотосферах возможны очень большие отклонения от локального термодинамического равновесия.

2. Покровный эффект.

Излучение звезды в непрерывном спектре, проходя через поверхностные слои звезды, испытывает частичное поглощение в спектральных линиях. Энергия, поглощённая в линиях, возвращается обратно в фотосферу. Вследствие этого увеличивается плотность излучения в фотосфере, а значит, и её температура. Это явление называется покровным эффектом.

Обозначим через A долю энергии, поглощённой в спектральных линиях. Эта величина может быть найдена из наблюдений. Например, для Солнца она приблизительно равна 10%.

Поглощение энергии в линиях происходит в поверхностном слое с оптической толщиной в непрерывном спектре порядка нескольких десятых. Однако для простоты мы сейчас примем, что энергия поглощается в линиях на границе звезды (при =0). Тогда при предположении о независимости коэффициента поглощения в непрерывном спектре от частоты (или при использовании среднего коэффициента поглощения) учёт покровного эффекта может быть произведён точно.

При составлении уравнения лучистого равновесия для данной задачи надо иметь в виду, что на каждый элементарный объём в фотосфере падает как диффузное излучение, идущее со всех сторон, так и излучение, отражённое от границы и ослабленное по пути. Интенсивность диффузного излучения мы обозначим через I(,), а интенсивность излучения, отражённого от границы,— через I*. Тогда в качестве условия лучистого равновесия получаем

S

=

1

2

+1

– 1

I(,)

d

+

1

2

I

*

1

0

e

– /

d

.

(7.12)

Подставляя в (7.12) выражение I(,) через S, найденное из уравнения переноса излучения (т.е. поступая так же, как при получении уравнения Милна), находим

S

=

1

2

0

E|-'|

S(')

d'

+

1

2

I

*

E

.

(7.13)

Для определения величины I* мы должны воспользоваться соотношением

I

*

=

2A

1

0

I(0,)

d

,

(7.14)

выражающим собой тот факт, что из количества энергии, падающей на границу, отражается обратно доля A. Очевидно, что в данном случае поток излучения должен быть таким же, как и при отсутствии покровного эффекта (т.е. равным F). Поэтому имеем

Поделиться:
Популярные книги

Сердце Дракона. Том 19. Часть 1

Клеванский Кирилл Сергеевич
19. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.52
рейтинг книги
Сердце Дракона. Том 19. Часть 1

Последняя Арена 10

Греков Сергей
10. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 10

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Звезда сомнительного счастья

Шах Ольга
Фантастика:
фэнтези
6.00
рейтинг книги
Звезда сомнительного счастья

Live-rpg. эволюция-4

Кронос Александр
4. Эволюция. Live-RPG
Фантастика:
боевая фантастика
7.92
рейтинг книги
Live-rpg. эволюция-4

Девятое правило дворянина

Герда Александр
9. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Девятое правило дворянина

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

Para bellum

Ланцов Михаил Алексеевич
4. Фрунзе
Фантастика:
попаданцы
альтернативная история
6.60
рейтинг книги
Para bellum

Егерь

Астахов Евгений Евгеньевич
1. Сопряжение
Фантастика:
боевая фантастика
попаданцы
рпг
7.00
рейтинг книги
Егерь

Вечная Война. Книга VII

Винокуров Юрий
7. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
5.75
рейтинг книги
Вечная Война. Книга VII

Я снова не князь! Книга XVII

Дрейк Сириус
17. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я снова не князь! Книга XVII

Ваантан

Кораблев Родион
10. Другая сторона
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Ваантан

Идущий в тени 4

Амврелий Марк
4. Идущий в тени
Фантастика:
боевая фантастика
6.58
рейтинг книги
Идущий в тени 4

Мятежник

Прокофьев Роман Юрьевич
4. Стеллар
Фантастика:
боевая фантастика
7.39
рейтинг книги
Мятежник