Чтение онлайн

на главную

Жанры

Математика. Утрата определенности.
Шрифт:

Два кватерниона равны в том и только том случае, если попарно равны коэффициенты a, b, cи dв представлениях этих чисел. При сложении двух кватернионов суммы соответствующих коэффициентов образуют новые коэффициенты. Таким образом, сумма двух кватернионов сама также является кватернионом. Чтобы определить умножение кватернионов, Гамильтону пришлось задать произведения iи j, iи k, jи k.Гамильтон исходил из того, что произведение кватернионов должно быть кватернионом и что кватернионы должны сохранять как можно больше свойств вещественных и комплексных чисел. Достичь желаемого ему удалось, приняв правила умножения:

jk = i, kj = -i,

ki = j, ik = -j,

ij = k, ji = -k.

Эти

правила означают, что умножение кватернионов не коммутативно, т.е. если pи q— кватернионы, то pqне равно qp.Выполнимо и деление одного кватерниона на другой. Но поскольку умножение кватернионов не коммутативно, то разделить кватернион pна кватернион qозначает найти либо такой кватернион r,что р = qr,либо такой кватернион r,что p = rq.Частное r вэтих двух случаях не обязательно должно быть одним и тем же; поэтому их и записывают по-разному: в первом случае пишут r = q – 1p,a во втором — pq – 1. Хотя кватернионы не получили столь широкого применения, как рассчитывал Гамильтон, ему удалось с их помощью решить немало физических и геометрических задач.

Введение кватернионов явилось еще одним потрясением для математики. Налицо был пример физически полезной алгебры, не обладающей фундаментальным свойством всех известных ранее чисел — здесь не выполнялось правило ab = ba.

Вскоре после того, как Гамильтон создал свои кватернионы, математики, работавшие в других областях, ввели еще более необычные алгебры. Знаменитый алгебраист и геометр Артур Кэли (1821-1895) ввел матрицы— квадратные или прямоугольные таблицы чисел. Над матрицами также можно было производить обычные алгебраические операции, но умножение матриц, как и кватернионов, не было коммутативным. Кроме того, произведение двух матриц могло равняться нулю, даже если оба сомножителя были отличны от нуля. Кватернионы и матрицы ознаменовали начало появления нескончаемой вереницы новых алгебр со все более необычными свойствами. Несколько таких алгебр создал Герман Гюнтер Грассман (1809-1877). По своей общности они превосходили кватернионы Гамильтона. К сожалению, Грассман всю жизнь оставался преподавателем средней школы, и прошло немало лет, прежде чем его работа привлекла заслуженное внимание. Как бы то ни было, Грассман пополнил множество так называемых гиперчисел(или, как сегодня чаще говорят, гиперкомплексных чисел {57} ) новыми полезными разновидностями.

57

В наши дни термин «гиперкомплексные числа» все более вытесняется (странным) термином алгебра:под этим словом понимают как целую ветвь математики, так и, в более узком смысле, совокупность гиперкомплексных чисел определенного рода.

Создание новых алгебр для тех или иных специальных целей само по себе не ставило под сомнение истинность обычной арифметики и ее приложений в алгебре и математическом анализе. Кроме того, обычные вещественные и комплексные числа использовались для совершенно разных целей, и их применимость нигде не вызывала сомнений. Тем не менее сам факт появления на сцене новых алгебр заставил усомниться в истинности привычной арифметики и алгебры, подобно тому как люди, узнав об обычаях неизвестной ранее цивилизации, начинают по-новому смотреть на свои собственные обычаи.

Наиболее сильной критике истинность арифметики подверглась со стороны Германа Гельмгольца (1821-1894), выдающегося физиолога, физика и математика. В своей книге «Счет и измерение» (1887) Гельмгольц провозгласил основной проблемой арифметики, обоснование ее автоматическойприменимости к физическим явлениям. По мнению Гельмгольца, единственным критерием применимости законов арифметики мог быть опыт. Утверждать априори, что законы арифметики применимы в любой данной ситуации, невозможно.

По поводу применимости законов арифметики Гельмгольц высказал немало ценных замечаний. Само понятие числа заимствовано из опыта. Некоторые конкретные опыты приводят к обычным типам чисел: целым, дробным, иррациональным — и к свойствам этих чисел. Однако обычные числа применимы лишь именно к этим опытам. Мы сознаем, что существуют виртуально эквивалентные объекты, и тем самым сознаем, что можем говорить, например, о двух коровах.

Но чтобы выражения подобного рода сохраняли силу, рассматриваемые объекты не должны исчезать, сливаться или претерпевать деление. Одна дождевая капля, если ее слить с другой дождевой каплей, вовсе не образует двух дождевых капель. Даже понятие равенства неприменимо автоматически к каждому опыту. Кажется несомненным, что если объект aравен объекту c,а объект bравен объекту c,то объект aдолжен быть равен объекту b.Но два звука могут казаться по высоте такими же, как третий звук, и все же мы в состоянии отличать на слух первые два звука. Следовательно, два объекта, порознь равные третьему, не обязательно должны быть равны между собой. Аналогично цвет aможет казаться таким же, как цвет b,а цвет b— таким же, как цвет c,и все же цвет aиногда удается отличить от цвета c.

Много других примеров можно привести в подтверждение того, что наивное применение арифметики иногда давало нелепые результаты. Так, смешав два равных объема воды — один при температуре 40°C, другой при температуре 50°C, — мы не получим удвоенного объема при температуре 90°. Путем наложения двух гармонических тонов — одного с частотой 100 Гц, другого с частотой 200 Гц — мы не получим гармонический тон с частотой 300 Гц. В действительности составной тон будет иметь частоту 100 Гц. Соединив в электрической цепи параллельно два резистора с сопротивлениями R 1и R 2, мы получим сопротивление величиной R 1R 2/ (R 1 + R 2), a не сопротивление R 1 + R 2.Как в шутку заметил некогда Анри Лебег (1875-1941), поместив в клетку льва и кролика, мы не обнаружим в ней позднее двух животных.

Из химии известно, что, смешивая водород и кислород, можно получить воду. Но если взять два объема водорода и один объем кислорода, то мы получим не три, а два объема водяного пара. Аналогично из одного объема азота и трех объемов водорода мы получим два объема аммиака. Физическое объяснение этой удивительной арифметики ныне известно. По закону Авогадро, в равных объемах любого газа при одинаковой температуре и одинаковом давлении содержится равное число частиц.Например, если в данном объеме кислорода содержится 10 молекул, то при той же температуре и том же давлении в равном объеме водорода содержится также 10 молекул. Следовательно, удвоенный объем водорода содержит 20 молекул. Известно, что молекулы кислорода и водорода двухатомны. Каждая из 20 двухатомных молекулводорода, соединяясь с одним атомом кислорода, образует молекулу воды. Так как всего имеется 10 молекул кислорода, то образуется 20 молекул воды, т.е. два, а не три объема. Таким образом, обычная арифметика не дает правильного описания того, что происходит при смешении газов, если подсчет производить по объемам.

Обычная арифметика не позволяет правильно описать и то, что происходит при смешении некоторых жидкостей. Если кварту джина смешать с квартой вермута, то получится чуть меньше двух кварт смеси. Смешав 1 л спирта с 1 л воды, мы получим 1,8 л спиртового раствора. То же справедливо и для большинства жидкостей, в состав которых входит спирт. Взяв столовую ложку, воды и столовую ложку соли, мы не получим две столовые ложки крепкого раствора соли. При смешивании некоторых химических веществ происходит взрыв — объем смеси заведомо не равен сумме объемов исходных веществ.

Для описания многих физических ситуаций неприменимы не только свойства целых чисел — на практике нередко приходится прибегать к совсем иной арифметике дробных чисел. Рассмотрим, например, футбол, столь любимый миллионами болельщиков во всем мире.

Предположим, что в одной игре нападающий трижды пробил по воротам противника, а в другой игре — четыре раза. Сколько раз всего он бил по воротам противника? Подсчитать нетрудно: всего он бил по воротам противника 7 раз. Предположим, что в первой игре наш нападающий забил 2 гола, а во второй — 3 гола. Сколько голов он забил за две игры? И на этот раз ответ получить легко: за две игры он забил 2 + 3 = 5 голов. Но и болельщиков, и самого игрока обычно интересует средняя результативность,т.е. отношение числа забитых голов к числу ударов по воротам противника. В первой игре это отношение было равно 2/3, во второй — 3/4. Предположим, что нападающий или болельщик хочет по этим данным вычислить среднюю результативность за две игры. Некоторые полагают, что для этого необходимо лишь сложить оба отношения по обычным правилам сложения дробей, т.е. составить сумму:

Поделиться:
Популярные книги

Фиктивная жена

Шагаева Наталья
1. Братья Вертинские
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Фиктивная жена

Прометей: каменный век

Рави Ивар
1. Прометей
Фантастика:
альтернативная история
6.82
рейтинг книги
Прометей: каменный век

Сердце Дракона. Предпоследний том. Часть 1

Клеванский Кирилл Сергеевич
Сердце дракона
Фантастика:
фэнтези
5.00
рейтинг книги
Сердце Дракона. Предпоследний том. Часть 1

Дайте поспать! Том III

Матисов Павел
3. Вечный Сон
Фантастика:
фэнтези
5.00
рейтинг книги
Дайте поспать! Том III

Охота на эмиссара

Катрин Селина
1. Федерация Объединённых Миров
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Охота на эмиссара

Боги, пиво и дурак. Том 3

Горина Юлия Николаевна
3. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 3

Целитель

Первухин Андрей Евгеньевич
1. Целитель
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Целитель

"Фантастика 2023-123". Компиляция. Книги 1-25

Харников Александр Петрович
Фантастика 2023. Компиляция
Фантастика:
боевая фантастика
альтернативная история
5.00
рейтинг книги
Фантастика 2023-123. Компиляция. Книги 1-25

Мужчина моей судьбы

Ардова Алиса
2. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.03
рейтинг книги
Мужчина моей судьбы

Измена. Возвращение любви!

Леманн Анастасия
3. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Возвращение любви!

Нефилим

Демиров Леонид
4. Мания крафта
Фантастика:
фэнтези
боевая фантастика
рпг
7.64
рейтинг книги
Нефилим

Ваше Сиятельство 6

Моури Эрли
6. Ваше Сиятельство
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 6

Магия чистых душ 2

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.56
рейтинг книги
Магия чистых душ 2

Чиновникъ Особых поручений

Кулаков Алексей Иванович
6. Александр Агренев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чиновникъ Особых поручений