Механизмы регуляции вегетативных функций организма
Шрифт:
Нервно-гуморальная регуляция объема внеклеточной жидкости
Постоянство объема внеклеточной жидкости определяет постоянство параметров системы кровообращения, а следовательно, и нормальную работу всех органов и систем организма. При изменении объема циркулирующей крови или объема воды в межклеточном пространстве наблюдаются реакции, направленные на изменение работы сердца, емкости сосудистого русла, объема депонированной крови. Наряду с этим меняются диурез и натрийурез. Если объем внеклеточной жидкости увеличивается, наблюдается увеличение диуреза и натрийуреза, при уменьшении объема развиваются противоположные реакции.
Регуляция диуреза и натрийуреза осуществляется рефлекторным путем. Рецепторы, воспринимающие изменение объема циркулирующей крови и внеклеточной воды, расположены в стенках
Относительно механизма изменений натрийуреза высказано несколько гипотез. 1. Импульсы с волюморецепторов при гиповолемии поступают в гипоталамус и через выработку адренокортикотропного гормона (АКТГ) аденогипофизом стимулируют образование альдостерона в коре надпочечников. 2. Предполагают, что уровень продукции альдостерона контролируется и адреногломерулотропным гормоном (АГТГ), вырабатывающимся в эпифизе под влиянием нейросекрета стволовых структур мозга (средний мозг, район сильвиева водопровода). При уменьшении объема циркулирующей крови происходит уменьшение растяжения стенок предсердий (особенно правого), стимулируется выработка АГТГ, приводящая к увеличению продукции альдостерона, повышению реабсорбции натрия в дистальном сегменте, снижению натрийуреза и вторично — к снижению диуреза. 3. При увеличении объема циркулирующей крови в заднем отделе гипоталамуса вырабатывается специальный натрийуретический гормон (третий фактор). Он тормозит проксимальную реабсорбцию натрия. Поскольку объем проксимальной реабсорбции натрия и воды сравнительно велик, уменьшение реабсорбции натрия только на 1% приводит к значительному увеличению натрийуреза и диуреза.
Наряду с центральными нейрогормональными механизмами в волюморегуляции может принимать участие и ренин-ангиотензинная система. При гиперволемии тормозится выработка ренина, что приводит к усилению диуреза и натрийуреза, а при гиповолемии наблюдаются противоположные реакции.
Гипоталамические центры являются первичными мотивационными центрами, регулирующими водно-солевое равновесие организма и побуждающими животное или человека к реализации поведения, направленного на поиск факторов среды, необходимых для его восстановления. В организации целенаправленного поиска воды и в согласовании вегетативных и соматических компонентов этой реакции, как и в организации других мотиваций, принимают участие лимбическая система и кора больших полушарий. Регуляция диуреза также не сводится только к подкорковым механизмам. Кора больших полушарий принимает участие в условно-рефлекторной регуляции выделительной функции почек. Об этом свидетельствуют результаты опытов с гипнотическим внушением, с условно-рефлекторным изменением диуреза у собак при многократном введении в желудок воды в сочетании с каким-либо «сигналом», условно-рефлекторная болевая анурия. Условно-рефлекторное влияние коры больших полушарий на почку также осуществляется через вовлечение в реакцию нейрогипофиза и изменение интенсивности продукции АДГ.
Регуляция ионного состава крови
Участие почек в регуляции ионного состава крови имеет большое значение для нормальной жизнедеятельности организма, так как стабильный электролитный состав внутренней среды определяет не только водно-солевое равновесие и объем внеклеточной жидкости, но и активность всех ферментных систем, трофику тканей, кислотно-щелочное равновесие.
Возможны раздельная и избирательная регуляция выделения почкой различных электролитов, но механизмы регуляции ионного состава крови в настоящее время изучены недостаточно. Лучше всего изучена регуляция баланса натрия в организме — основного катиона внеклеточной жидкости. Регуляция функции почек по выведению
Так как с переносом натрия через мембрану почечных канальцев сопряжен перенос ионов хлора, то во всех перечисленных случаях возможны изменения его транспорта. Наличие специализированных систем транспорта и регуляции баланса хлора в настоящее время неизвестно.
Относительно роли почек в регуляции уровня калия во внеклеточной жидкости сведений пока крайне мало. Показано, что калийуретическая функция почек может регулироваться гормонами коры надпочечников и инсулином — гормоном поджелудочной железы. Альдостерон активирует натрий-калиевый насос в базальной мембране, увеличивает проницаемость апикальной мембраны почечного эпителия дистального канальца и тем самым способствует секреции калия в обмен на реабсорбируемый натрий. Инсулин уменьшает калийурез; он усиливает переход глюкозы и калия в клетки. Предполагают наличие и других гуморальных регуляторов калийуреза, так как реабсорбция и секреция калия необязательно сопряжены с переносом натрия через мембраны почечного эпителия.
На строго константном уровне в плазме крови удерживается концентрация двухвалентных катионов — кальция и магния. Степень участия почек в регуляции их баланса определяется гормоном паращитовидных желез — паратгормоном и щитовидной железы — тирокальцитонином. Возможно, изменения в реабсорбции магния под влиянием этих гормонов — явление вторичное, связанное с изменением реабсорбции кальция. Паратгормон способствует активации холекальциферола и усиливает реабсорбцию кальция в дистальных почечных канальцах, а тирокальцитонин повышает его фильтрацию через клубочки и, возможно угнетает реабсорбцию в канальцах. Оба гормона участвуют также в регуляции выведения из организма фосфатных ионов, тормозя их реабсорбцию в проксимальных канальцах.
Оценивая роль почек в регуляции ионного состава крови, необходимо иметь в виду общую закономерность, установленную для животных различных филогенетических линий: трансмембранный перенос большой группы органических и неорганических соединений (глюкоза, аминокислоты, мочевина, парааминогиппуровая кислота, магний, кальций) прямо связан с транспортом натрия. Поэтому регуляция баланса натрия в организме имеет важное значение в регуляции гомеостатической функции почек и по отношению к перечисленным выше веществам.
Выведение мочи
Образующаяся в канальцах почки моча непрерывно, по мере образования, поступает через мочевыводящие Пути (чашечки, лоханки, мочеточники) в мочевой пузырь.
Мочевой пузырь — полый мышечный орган, служащий резервуаром для мочи. Мышцы пузыря в функциональном отношении представляют единое целое. У места выхода из пузыря мочеиспускательного канала расположен сфинктер мочевого пузыря. Несколько ниже его расположен второй сфинктер, образованный поперечнополосатой мускулатурой, — сфинктер мочеиспускательного канала. Сфинктеры препятствуют вытеканию мочи из пузыря.
Мочевой пузырь имеет двойную эфферентную иннервацию: парасимпатическую и симпатическую. Парасимпатические нервные волокна идут в составе тазового нерва; при раздражении их происходит сокращение мышц пузыря и расслабление сфинктера, т.е. создаются условия для опорожнения пузыря. Симпатические нервные волокна идут от нижнего брыжеечного узла и почечного сплетения; при раздражении их, наоборот, мускулатура пузыря расслабляется, а тонус сфинктера повышается. Таким образом создаются условия для наполнения пузыря. Сфинктер мочеиспускательного канала иннервируется двигательными соматическими нервными волокнами. Афферентные волокна от пузыря и сфинктеров идут в составе тех же нервов.