Чтение онлайн

на главную - закладки

Жанры

Нанокомпозиты на основе оксидов 3d-металлов. Исследования морфологии и структуры методами электронной микроскопии и рентгеновской спектроскопии
Шрифт:

2.4.1. Рентгеновская спектроскопия поглощения с использованием СИ

Рентгеновская спектроскопия поглощения (англоязычный термин XAS – X-ray absorption spectroscopy) основан на изучении тонкой структуры спектров рентгеновского поглощения (XAFS – X-ray absorption ёne structure) и является одним из методов структурного анализа. Обязан своим бурным развитием в последние десятилетия XX в. появлению источников синхротронного излучения, ведь именно применение СИ позволило получить, для измерений энергетической зависимости коэффициента поглощения, высокоинтенсивное рентгеновское излучение с любой необходимой длиной волны. С применением СИ значительно упростилось измерение спектров любых элементов и концентраций. Применение СИ в рентгеновской спектроскопии поглощения позволило сократить время измерений без потери точности. Выгодной особенностью СИ является также сравнительно малое поперечное

сечение и высокая параллельность рентгеновских пучков, а также возможность дополнительно коллимировать и фокусировать их с помощью рентгеновской оптики. Кроме того, для разработки новых методов экспериментальных исследований в настоящее время успешно используют импульсную природу, поляризацию и когерентность СИ [89]. Возможность регистрации экспериментальных спектров XAFS с разрешением по времени дает возможность исследования структурных изменений при различных реакциях, в частности динамики изменений фазового состава при химических реакциях. Проведение in situ- измерений XAFS спектров также позвляет изучать влияние внешних воздействий (давление, температура, наличие атмосферы определенного газа и т.д.) на локальную и электронную структуры исследуемых материалов. Исследовать структурные и химические процессы.

Взаимодействие рентгеновского излучения с веществом может приводить к целому ряду процессов (рис. 4). Так в результате поглощения рентгеновского излучения веществом электроны внутренних оболочек атомов могут переходить как на дискретные уровни системы, так и в область непрерывного спектра. Переход электрона на свободные дискретные уровни приводит к резкому возрастанию поглощения рентгеновского излучения. В спектрах начинают наблюдаться дискретные линии, которые и получили название ближней тонкой структурой спектра рентгеновского поглощения. Энергетическое положение таких дискретных линий поглощения является характеристической величиной для каждого химического элемента, что позволяет однозначно определять химический элемент по положению порога возбуждения. Метод рентгеновской спектроскопии поглощения дает возможность исследования всех химических элементов, начиная с лития, а также веществ в любом агрегатном состоянии.

Рис. 4. Основные процессы, протекающие в веществе при поглощении рентгеновского излучения

На рис. 5 представлена принципиальная схема экспериментальной установки для получения рентгеновских спектров поглощения с использованием синхротронного излучения. Существует несколько методов регистрации рентгеновских спектров поглощения: на прохождение и по выходу флуоресценции, вторичных, фото- или Оже- электронов.

Рис. 5. Схема установки для получения рентгеновских спектров поглощения с применением синхротронного излучения

Первый метод состоит в измерении падающего на образец излучения и прошедшего сквозь него. Тогда линейный коэффициент рентгеновского поглощения определяют по формуле

где I0 и It – соответственно интенсивность падающего излучения и излучения, прошедшего через образец. В другом случае измеряют интенсивность физических процессов, происходящих в результате взаимодействия излучения с образцом. В методе регистрации выхода флуоресценции коэффициент поглощения будет определяться формулой

Измерение спектра поглощения производится по точкам, в каждой точке необходимо использовать строго монохроматизированное рентгеновское излучение, однако получить такое излучение с большим набором различных длин волн в реальности невозможно. Поэтому при регистрации экспериментальных спектров используют полосу узкого диапазона длин волн, вырезанную из первичного пучка монохроматором. Причем ширина этой линии должна быть сравнима с естественной шириной линии характеристического химического элемента.

Для регистрации XAFS спектров

могут применяться различные детекторы, но все они должны обладать высокой линейностью и хорошей статистикой счета. В случае регистрации спектра методом на прохождение используются два детектора, представляющие собой ионизационные газонаполненные камеры пролетного типа, состав газовой смеси в них и их длина подбирается таким образом, чтобы, пройдя первую камеру (регистрация интенсивности первичного монохроматического пучка), излучение теряло не более 20 % интенсивности, а в камере детектора, регистрирующего интенсивность прошедшего пучка, излучение практически полностью поглощалось. Измерение спектров методом регистрации выхода флуоресценции требует применения детекторов с высоким спектральным разрешением, которое необходимо для отделения флуоресцентного излучения от других, возникающих в результате взаимодействия первичного излучения с образцом. Таковыми являются энергодисперсионные полупроводниковые детекторы. Применение таких детекторов повышает точность и чувствительность измерений, но удорожает проведение экспериментов, потому что требуется охлаждение детекторов до криогенных температур. Кроме того, они обладают низкой скоростью счета.

Каждый из методов получения рентгеновских спектров имеет свою область применения. Так, например, метод на прохождение является наиболее быстрым, простым и точным при измерениях тонких, гомогенных образцов с высокой концентрацией исследуемого элемента, в тоже время режим регистрации флуоресценции увеличивает время съемки, но дает возможность исследования толстых образцов, образцов с малой концентрацией исследуемого элемента. Регистрация выхода электронов из исследуемого образца – полного электронного тока или Оже-электронного тока – позволяет повысить чувствительность метода XAFS к поверхностным слоям образца благодаря тому, что глубина выхода электронов не превышает 50–100 Е.

Для успешного эксперимента важен выбор оптимальных параметров съемки. Параметрами, определяющими точность и надежность получаемых данных, являются шаг сканирования и длительность измерений на каждом шаге (экспозиция). Выбор этих параметров не является однозначным. Так, увеличивая экспозицию, получают высокую точность, но одновременно увеличивается время съемки и в то же самое время повышается вероятность флуктуаций шума измерительной электроники. Для достижения нужной статистики в одном и том же режиме регистрируют несколько спектров и результаты складывают.

Спектры рентгеновского поглощения отражают распределение электронной плотности свободных состояний в зоне проводимости. Коэффициент поглощения определяется формулой

где суммирование производится по всем возможным конечным состояниям f, Мif – матричный элемент вероятности перехода, зависящий от взаимного расположения соседних атомов и включающий радиальные многочастичные волновые функции начального i и конечного f состояний. Его можно разделить на низкоэнергетическую и высокоэнергетическую области (рис. 6), различающиеся между собой физическими механизмами формирования тонкой структуры: флуктуации коэффициента поглощения рентгеновского излучения в области, близкой к краю поглощения со стороны высоких энергий (международный термин XANES – X-ray Absorption Near Edge Structure ) либо в околокраевой области (NEXAFS – Near Edge X-ray Absorption Fine Structure) и протяженную осцилляционную структуру, продолжающуюся обычно до 1 кэВ выше края поглощения (EXAFS – Extended X-ray Absorption Fine Structure).

Рис. 6. Области XANES и EXAFS рентгеновского спектра поглощения

Различия NEXAFS и XANES состоит, как правило, в энергии используемого рентгеновского излучения. В случае экспериментов с применением рентгеновского излучения высокой энергии (жесткий рентген), говорят о XANES спектроскопии, в случае использования мягкого рентгеновского излучения – о NEXAFS спектроскопии. Формирование XANES области обусловлено рассеянием фотоэлектронов с длиной волны порядка межатонмных расстояний, тогда как область EXAFS формируется в результате рассеяния электронов с более короткой длиной волны. Так как в монографии представлены результаты исследований, где основным методом диагностики выступала XANES спектроскопия, мы не будем рассматривать особенности формирования и интерпретации области EXAFS.

Поделиться:
Популярные книги

Проклятый Лекарь. Род III

Скабер Артемий
3. Каратель
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь. Род III

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Измена. Возвращение любви!

Леманн Анастасия
3. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Возвращение любви!

Неудержимый. Книга XI

Боярский Андрей
11. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XI

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Война

Валериев Игорь
7. Ермак
Фантастика:
боевая фантастика
альтернативная история
5.25
рейтинг книги
Война

Под маской моего мужа

Рам Янка
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Под маской моего мужа

Камень. Книга 3

Минин Станислав
3. Камень
Фантастика:
фэнтези
боевая фантастика
8.58
рейтинг книги
Камень. Книга 3

Измена. Право на счастье

Вирго Софи
1. Чем закончится измена
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на счастье

Газлайтер. Том 12

Володин Григорий Григорьевич
12. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 12

Сиротка

Первухин Андрей Евгеньевич
1. Сиротка
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Сиротка

Охота на эмиссара

Катрин Селина
1. Федерация Объединённых Миров
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Охота на эмиссара

Кодекс Охотника. Книга XV

Винокуров Юрий
15. Кодекс Охотника
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XV

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12