Чтение онлайн

на главную

Жанры

Шрифт:

Таким образом само по себе взятое приложение диференциального исчисления к элементарным уравнениям движения не представляет реального интереса; формальный же интерес проистекает из общего механизма исчисления.

Но иное значение получает разложение движения в отно- 22*

{340}

шении определения его траектории; если последняя есть кривая и ее уравнение содержит высшие степени, то требуются переходы от прямолинейных функций возвышения в степень к самим степеням), а так как первые должны быть выведены из первоначального уравнения движения, содержащего фактор времени, с элиминированием времени, то этот фактор вместе» с тем должен быть низведен к тем низшим функциям развертывания, из которых могут быть получены означенные уравнения линейных определений. Эта сторона приводит к рассмотрению интереса другой части диференциального исчисления.

Сказанное доселе имело своей целью выделить и установить простое специфическое определение диференциаль- ного исчисления

и показать наличие этого определения на некоторых элементарных примерах. Это определение, как оказалось, состоит в том, что из уравнения степенных функций находят коэфициент члена разложения, так называемую первую производную функцию, и что обнаруживают наличие того отношения, которое она собою представляет, в моментах конкретного предмета, посредством какового, полученного таким образом уравнения между обоими отношениями определяются сами эти моменты. Мы должны вкратце рассмотреть также и принцип интегрального исчисления и установить, что получается из его приложения для его специфического конкретного определения. Понимание этого исчисления было нами упрощено и определено более правильно уже благодаря одному тому, что мы его больше не принимаем за метод суммирования, как его назвали в противоположность диференцированию (в котором приращение считается существенным ингредиентом), вследствие чего интегрирование представлялось находящимся в существенной связи с формой ряда. — Что касается задачи этого исчисления, то таковой, во-первых, так же как и в диферен- циальном исчислении, является теоретическая или, скорее, формальная задача, но, как известно, обратная задаче диференцирования. Здесь исходят из функции, рассматриваемой как производная у как коэфициент ближайшего члена, получающегося в результате разложения в ряд некоторого,

{341}

пока еще неизвестного уравнения, а» из этой производной должна быть найдена первоначальная степенная функция; та функция, которая в естественном порядке развертывания должна быть рассматриваема как первоначальная, здесь выводится, а рассматривавшаяся ране© как производная есть здесь данная или вообще начальная. Но формальная сторона этого действия представляется уже выполненной диференциальным исчислением, так как в последнем устанавливается вообще переход и отношение первоначальной функции к функции, получающейся в результате разложения в ряд. Если при этом отчасти уже для того, чтобы взяться за ту функцию, из которой следует исходить, отчасти же для того, чтобы осуществить переход от нее к первоначальной функции, оказывается необходимым во многих случаях прибегнуть к форме ряда, то следует прежде всего твердо помнить, что эта форма как таковая не имеет непосредственно ничего общего с собственным принципом интегрирования.

Но другой стороной задачи этого исчисления является с точки зрения формальной операции его приложение.

А последнее само представляет собой задачу узнать, какое предметное значение (в вышеуказанном смысле) имеет та первоначальная функция, которую мы находим по данной функции, принимаемой за первую [производную]. Может казаться, что с этим учением, взятым само по себе, также покончено уже в диференциальном исчислении. Однако здесь появляется дальнейшее обстоятельство, вследствие которого дело оказывается не так просто. А именно, так как в этом исчислении оказывается, что благодаря первой производной функции уравнения кривой получилось некоторое линейное отношение, то тем самым мы также знаем, что интегрирование этого отношения дает уравнение кривой в виде отношения абсциссы и ординаты; или, если бы было дано уравнение для площади кривой, то диференциальное исчисление должно было бы предварительно научить нас относительно значения первой производной функции такого уравнения, что эта функция представляет ординату как функцию абсциссы, стало быть, представляет уравнение кривой.

{342}

Но главное дело здесь в том, какой из моментов определения предмета дан в самом уравнении, ибо лишь от данного» может отправляться аналитическая трактовка, чтобы переходить от него к прочим определениям предмета. Дано, например, не уравнение поверхности, образуемой кривою, и не уравнение возникающего посредством ее вращения тела, а также и не уравнение некоторой дуги этой кривой, а лишь отношение абсциссы и ординаты в уравнении самой кривой. Переходы от указанных определений к самому этому уравнению не могут уже поэтому быть предметом самого диференциального исчисления; нахождение таких отношений есть дело интегрального исчисления.

Но, далее, было уже показано, что диференцирование уравнения с несколькими переменными величинами дает степенной член разложения (die Entwicklungspotenz) (51) или диференциальный коэфициент не как уравнение, а только как отношение; задача состоит затем в том, чтобы в моментах предмета указать для этого отношения, которое есть производная функция, другое равное ему. Напротив, предметом интегрального исчисления является само отношение первоначальной к производной, в этом случае данной функции, и задача состоит в том, чтобы указать значение искомой первоначальной функции

в предмете данной первой производной функции или, вернее, так как это значение, например, площадь, ограничиваемая кривой или подлежащая ректифицированию, представляемая в виде прямой кривая и т. д., уже высказано как задача, то требуется показать, что такое определение может быть найдено посредством некоторой первоначальной функции, и вместе с тем показать, каков тот момент предмета, который для этой цели должен быть принят за исходную функцию, каковою в данном случав служит производная функция.

Обычный метод, пользующийся представлением бесконечно малой разности, слишком облегчает себе задачу. Для квадратуры кривых линий он принимает бесконечно малый треугольник, произведение ординаты на элемент (т. е. на бесконечно малую часть) абсциссы, за трапецию, имеющую одной своей стороной бесконечно-малую дугу, противопо-

{343}

ложную сказанной бесконечно-малой части абсциссы.

Произведение это и интегрируется в том смысле, что интеграл дает сумму бесконечно многих трапеций, ту плоскость, которую требуется определить, т. е. конечную величину сказанного элемента плоскости. И точно так же обычный метод образует из бесконечно-малой дуги и соответствующих ей ординаты и абсциссы прямоугольный треугольник, в котором квадрат этой дуги считается равным сумме квадратов обоих других бесконечно малых, интегрирование которых и дает конечную дугу.

Этот прием имеет своей предпосылкой то общее открытие, которое лежит в основании этой области анализа и которое здесь выступает в виде положения о том, что квадратура кривой, выпрямленная дуга и т. д. находится к известной (данной уравнением кривой) функцию в отношении так называемой первоначальной функции к производной. Здесь дело идет о том, чтобы в случае, если известная часть какого-нибудь математического предмета (например, некоторой кривой) принимается за производную функцию, узнать, какая другая его часть выражается соответствующей первоначальной функцией. Мы знаем, что если данная уравнением кривой функция ординаты принимается за производную функцию, то соответствующая ей первоначальная функция есть выражение величины отрезанной этой ординатой и кривой плоскости, что если как производная функция рассматривается известное определение касательной, то ее первоначальная функция выражает величину соответствующей этому определению дуги и т. д. Однако заботу о том, чтобы узнать и доказать, что эти отношения — отношение первоначальной функции к производной в отношение величин двух частей или «двух обстоятельств математического предмета — образуют пропорцию, — заботу об этом снимает с себя метод, пользующийся бесконечно-малым и механически оперирующий им. Своеобразной заслугой является уже то остроумие, с которым на основании результатов, известных уже заранее из других источников, этот метод открывает, что известные и именно такие- то стороны математического предмета находятся между

{344}

собою в отношении первоначальной функции к производной.

Из этих двух функций производная или·, как она была определена выше, функция возвышения в степень, есть здесь, в интегральном исчислении, данная по отношению к первоначальной функции, которая еще должна быть найдена из нее путем интегрирования. Однако первая дана не непосредственно, а равно не дано уже само по себе, какая часть или какое определение математического предмета должно быть расссматриваемо как производная функция, дабы через приведение этого определения к первоначальной функции найти другую часть или другое определение предмета, то определение, величину которого требуется установить. Обычный метод, сразу же представляющий, как мы сказали, известные части предмета как бесконечно-малые в форме производных функций, находимых из первоначально данного уравнения предмета вообще посредством диференци- рования (как, например, для выпрямления кривой бесконечно-малые абсциссы и ординаты), принимает за таковые те части или определения, которые можно привести в такую связь с предметом задачи (в нашем примере с дугой), также представляемым, как бесконечно-малый, которая установлена элементарной математикой, благодаря чему, если известны означенные части, то определяется также и та часть, величину которой требуется найти; так, например, для выпрямления кривой указанные три бесконечно-малых приводятся в связь уравнения прямоугольного треугольника, для ее квадратуры ордината и бесконечно-малая абсцисса приводятся в связь некоторого произведения, причем площадь принимается вообще за арифметическое произведение линий.

Переход от этих так называемых элементов площади, дуги и т. д. к величине самих площадей, дуги и т. д. считается тогда лишь восхождением от бесконечного выражения к конечному или к сумме бесконечно многих элементов, из которых, согласно предположению, состоит искомая величина.

Можно, поэтому, сказать лишь поверхностно, что интегральное исчисление есть только обратная, но вообще более трудная проблема диференциального исчисления. Дело

{345}

обстоит, напротив, скорее так, что реальный интерес интегрального исчисления направлен исключительно на взаимное отношение первоначальной и производной функции в конкретных предметах.

Поделиться:
Популярные книги

По осколкам твоего сердца

Джейн Анна
2. Хулиган и новенькая
Любовные романы:
современные любовные романы
5.56
рейтинг книги
По осколкам твоего сердца

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Провинциал. Книга 6

Лопарев Игорь Викторович
6. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 6

Эфир. Терра 13

Скабер Артемий
1. Совет Видящих
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эфир. Терра 13

Её (мой) ребенок

Рам Янка
Любовные романы:
современные любовные романы
6.91
рейтинг книги
Её (мой) ребенок

Темный Патриарх Светлого Рода 3

Лисицин Евгений
3. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 3

Великий князь

Кулаков Алексей Иванович
2. Рюрикова кровь
Фантастика:
альтернативная история
8.47
рейтинг книги
Великий князь

Академия

Сай Ярослав
2. Медорфенов
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Академия

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Невеста вне отбора

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
7.33
рейтинг книги
Невеста вне отбора

Адепт: Обучение. Каникулы [СИ]

Бубела Олег Николаевич
6. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.15
рейтинг книги
Адепт: Обучение. Каникулы [СИ]

Мимик нового Мира 8

Северный Лис
7. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 8

Утопающий во лжи 3

Жуковский Лев
3. Утопающий во лжи
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Утопающий во лжи 3