Сборник задач по математике с решениями для поступающих в вузы
Шрифт:
3.2. Чтобы связать данные углы с величиной угла, который нужно найти, следует спроецировать катеты треугольника на плоскость P и построить искомый угол.
3.3. При проецировании угла на плоскость P возникает четырехгранный угол, в котором три плоских угла даны, а два двугранных угла прямые. Чтобы установить связь между плоскими углами, нужно пересечь этот четырехгранный угол плоскостью Q, перпендикулярной к плоскости P.
3.4. Если спроецировать искомую прямую, параллельную а, на плоскость, перпендикулярную к а, то мы получим точку. Спроецируйте
3.5. Начать нужно с построения искомого угла. Для этого прямые AB и SC нужно перенести в одну точку. Если сместить прямую SC, то она «повиснет в воздухе» и угол, который мы получим, не будет связан с треугольником. Поэтому проведем через току C прямую CD, параллельную AB; угол SCD искомый.
3.6. Лучи Аx и Вy удобно расположить так, как показано на рис. I.3.6. Утверждение, что ОК = АО, равносильно утверждению, что АM = MK (рассмотрите прямоугольные треугольники ОАМ и OKM).
3.7. Если такое сечение четырехгранного угла существует, то в результате параллельного сдвига плоскости этого сечения мы получим новую плоскость, пересечение которой с четырехгранным углом — тоже параллелограмм. Поэтому строить сечение можно в любой точке ребра четырехгранного угла.
3.8. Если продолжить DE и BC до пересечения в точке F, то BD — средняя линия в треугольнике EFC (рис. I.3.8). Площадь треугольника DEА равна половине площади треугольника FEA.
3.9. Чтобы ответить на вопрос задачи, нужно определить высоту H пирамиды. Каждый из данных двугранных углов можно измерить с помощью линейного угла, опирающегося на высоту H. Остается использовать тот факт, что в основании лежит правильный треугольник.
3.10. Докажите, что высота, проведенная в треугольнике АDВ через вершину D, проходит через середину E основания AB. Тогда интересующий нас двугранный угол измеряется линейным углом DEC.
3.11. Условия задачи отражены на рис. I.3.11. Сторона а основания известна, так как известна площадь основания.
3.12. Аналогичное построение на плоскости приводит к образованию треугольника, подобного данному, с коэффициентом подобия 1/2 . Поэтому и здесь следует постараться выяснить, подобны ли рассматриваемые тетраэдры.
3.13. Если О — центр шара, касающегося боковых граней пирамиды в точках О1, О2 и О3 (рис. I.3.13), то легко установить, что SB1 = SB2 = SB3.
3.14. Достроить усеченную пирамиду до полной и рассмотреть высоты пирамид, имеющих три основания, о которых идет речь в условии.
3.15. Построить угол между скрещивающимися прямыми можно, если параллельно перенести их так, чтобы они проходили через одну точку. В качестве такой точки удобно выбрать вершину А основания пирамиды. Если мы достроим треугольник АВС, лежащий в основании, до параллелограмма АВСЕ (рисунок сделайте самостоятельно), то угол DАЕ будет искомым. Образовавшаяся в результате четырехугольная пирамида будет состоять из ребер данной длины, за исключением ребра DЕ.
3.16. Тетраэдр разбивается на две пирамиды с общим основанием — плоскостью сечения. Данное отношение объемов позволяет найти отношение высот этих пирамид и, следовательно, отношение синусов искомых углов.
3.17. Условия задачи отражены на рис. I.3.17. Нас интересует отношение площадей треугольников DАМ и DМS, в то время как все известные элементы сосредоточены в плоскости KSЕ. Поэтому нужно связать элементы треугольников DАМ и DМS с элементами треугольника KSЕ.
3.18. Использовать условие задачи, согласно которому высота пирамиды, опущенная из вершины D, проходит через точку пересечения высот основания АВС, с тем, чтобы доказать, что треугольники АDВ и АDС прямоугольные.
3.19. В пирамиде SАВС (рис. I.3.19) равнобедренные треугольники АSВ и АСВ равны. Следовательно, проведенные в них высоты из вершин S и С упадут в точку D — середину AB.
3.20. Если верхний из двух равных треугольников, лежащих один на другом в плоскости, начать вращать вокруг из общей стороны, то образованный ими двугранный угол может быть как острым, так и тупым. Поэтому придется рассмотреть два случая.
3.21. Если в основании АВС пирамиды провести высоту ВD, то отрезок SD разделит угол АSС пополам.
3.22. Покажите, что отрезки AB и CD взаимно перпендикулярны. Центр описанного шара лежит на их общем перпендикуляре KM, где K — середина СD, M — середина AB.