Магия чисел. Математическая мысль от Пифагора до наших дней
Шрифт:
Божественная концепция Ньютона представляет математический интерес, поскольку настойчиво повторяется в вопросе о бесконечности как характерный атрибут божественного жития. Бог, согласно Ньютону, «есть божество, или почти совершенство. Он вечен и бесконечен, всемогущ и всеведущ, что означает – его существование пришло к нам из вечности и в вечность уйдет, он живет из бесконечности в бесконечность… Но сам он не есть вечность и бесконечность, хотя и вечен, и бесконечен, он не длина и не пространство, но он конечен, и у него есть присутствие, и благодаря присутствию всегда и везде олицетворяет длину и пространство… У него нет тела, но есть плоть…».
Было бы интересно узнать, что декада кардиналов
Как известный англичанин, а он таковым был, Ньютон надеялся, если верить рассказу друзей, что его математическая астрономия снабдит современников рациональной концепцией божественного. Британские последователи Ньютона частенько выдавали собственные научные воззрения с комментариями менее провокационными, чем его, по вопросам теологического применения результатов своих исследований или хотя бы в виде простой хвалебной заметки. Эта религиозная наклонность британских коллег никогда не заставляла долго ждать насмешек более легкомысленных ученых с континента. Традиция вышла из моды в середине XIX века.
Хотя вокруг ньютоновского Бога должна быть аура математического мистицизма, но даже не нашлось и налета нумерологии ни в его теологии, ни в его науке. По темпераменту Ньютон был современным Фалесом с присущим ему здравым смыслом. Величайший из натуральных философов, он не позволял метафизике отбрасывать его назад, когда ему хотелось идти вперед. Абсолютное пространство, абсолютное время и абсолютное движение его «Принципов», возможно, было ведомо еще Платону. Но их не понимал Ньютон. Но он видел, что даже после очистки эти невразумительные абсолюты остаются нерелевантными задачами, с которыми имеешь дело повседневно, и он пошел дальше, не теряя время на них. Для его целей они были так же не важны, как его комментарии по вопросу природы Бога. Таким же образом он выстроил и математику для достижения главной цели. Как следствие, математический мистицизм был временно отстранен из заслуживающей уважения научной мысли его же «Принципами».
Но в профессиональном философском мышлении старые магические числа продолжали существовать, такие же фантастичные, как и прежде. Лейбниц (1646–1726), ведущий философ своего времени и один из немногих универсальных умов в истории, отмечал, что 1 и 0 только числа в двоичной шкале системы счисления. Из этого он сделал вывод, что Бог (1, Монад) создал вселенную из ничего (0, ноль). Хотя этот последний из пифагорейцев изобрел уравнения независимо от Ньютона, всего на двадцать лет или попозже. Никто не видел Лейбница шутящим. Мы присутствуем при совершении чуда.
Следующий критический эпизод в прогрессе математического мистицизма касается единственной неудачи безукоризненного наследника Евклида и неинформированного критика.
Глава 23
Поворотный пункт
Год 1733 – прошло шесть лет со дня смерти Ньютона, до конца света, предсказанного «Божественным Кузанином», оставался год, в судьбе математического мистицизма определенно настал решающий момент. Пифагореизм и платонизм в науке и математике исчерпали себя для тех ученых и математиков, кто познакомился с работами Джироламо Саккери. Но в части лавров Саккери повторял судьбу Роджера Бэкона. Критическим моментом стала измененная геометрическая истина, которая должна была войти в математику сразу за Саккери,
Утверждают, что «Элементы» Евклида выдержали больше изданий, чем любая другая опубликованная книга, кроме Библии. По сравнению с другими математическими трудами «Элементы», возможно, оказали самое непосредственное влияние на формирование и увековечивание мнения, будто «математическая реальность лежит вне нас». Поколение за поколением, сотни тысяч, если не миллионы податливых учеников элементарной геометрии были убеждены безапелляционностью постулатов Евклида, что его учение – единственно возможное восприятие пространства. И только в 1903 году Евклид был повсеместно исключен из числа учебников для школьников, которым он никогда и не предназначался. Его последним педагогическим прибежищем стали средние школы Англии. Упрямое сражение в течение тридцати лет завершилось в конце победой, и «Евклид» как синоним школьной геометрии наконец стал отмершим понятием в цивилизованных языках.
Геометрия Евклида, но не «Элементы» Евклида, не вид геометрии, изучаемый в обычном школьном курсе, остается наиболее простым и наиболее полезным из всех видов геометрии для повседневной жизни и для, как принято считать, наибольшей части физических наук. Но обыденная польза – не единственное достоинство ее практического использования для нашего поколения. Не менее важно и все, что наши предки усвоили из тактики геометрических доказательств, пытаясь определить значение «истины» и «реальности». Влияние элементарной геометрии на их привычки думать было столь практично для них, а через них – для нас, сколь все когда-либо существующие механизмы созданы в соответствии с геометрией Евклида и механикой Ньютона. Абсолютизм геометрических истин, вложенный в юношей в годы формирования личности, обусловил для образованных, но не мыслящих критически голов принятие абсолютизма в виде других малопонятных «истин» от философии и религии до экономики и политики.
Прежде чем проследим закат абсолютизма евклидовой геометрии, стоит слегка освежить в памяти то, что известно о ее бессмертном авторе. Евклид так сросся со своей работой, что почти ничего не известно о нем как о личности. Даты его жизни неконкретны, где-то 330–275 годы до н. э. приводятся чаще, видимо достаточно точно. Предполагают, что образование он получил в Афинах, возможно в Академии. Попытки повторить расчеты математической истины Платона, оказавшие влияние на композицию «Элементов» Евклида, полностью опирались на необоснованные гипотезы. «Элементы» были закончены в Александрии, где Евклид прожил большую часть своей жизни в качестве члена научного сообщества, образовавшегося вокруг великой библиотеки.
В книге осуществлена компиляция и систематизация элементарных геометрических и арифметических знаний того времени. Персональный вклад Евклида состоит в классификации и систематизации всех разрозненных материалов в логической последовательности, где все, по задумке автора, должно быть выведено из досконально описанных постулатов по принятым правилам дедуктивного умозаключения. Мерой его успеха в этом амбициозном проекте является неподдельный исторический интерес. В плане геометрии – ничего существенного.
Если оценка кажется слишком жесткой, то любой беспристрастный критик в состоянии убедить себя менее чем за час (что часто и делалось, когда европейские геометры начали выздоравливать от некритического подхода к греческой математической классике), что несколько описательных определений Евклида неверны, что он часто опирался на неявные допущения в дополнение к постулатам, которыми он ограничивался, что некоторые из его предположений, как он их называет, ложны, а то, что он выдавал за доказательства других, бессмысленно.