Сборник задач по математике с решениями для поступающих в вузы
Шрифт:
(x + 3)(x + 1)(x - 5) < 0.
Ответ. x < -3, -1 < x < 4, 4 < x < 5.
Пример 3. Решить неравенство
(3)
Данное неравенство не удовлетворяется в тех точках, где множители, стоящие в знаменателе, обращаются в нуль (x = 4, x = 2). Поэтому исключим эти точки из дальнейшего рассмотрения, обозначив их на рис. 10.6 светлыми кружками.
В
Множители (x + 3)^2 и (x - 4)^2, не меняющие знака на всей числовой оси, можно опустить, так как их влияние уже учтено. Во всех остальных точках неравенство (3) равносильно такому:
8
Если какая-то точка уже была отмечена светлым кружком, то изменять обозначение не следует.
(x + 1)(x - 5)(x - 2) < 0.
Ответ. x <= -1, 2 < x < 4, 4 < x <= 5.
Решите неравенства:
4. (5 - 2х)(3 - x)^3(x - 4)^2 < 0.
5.
Иррациональные неравенства. Решая уравнения, мы можем получать следствия данного уравнения и закончить решение проверкой, которая отсеивает посторонние корни. При решении же неравенств обычно получаются целые интервалы решений, что сильно усложняет проверку. Поэтому неравенства преобразовывают так, чтобы не нарушалась равносильность.
Начнем с иррациональных неравенств.
Пример 4. Решить неравенство
(4)
Нередко предлагают такое «решение»:
x^2 - 55х + 250 < (x - 14)^2,
– 55х + 250 < -28х + 196,
x > 2,
которое обосновывают следующим образом: «Левая часть меньше правой, но неотрицательна, так как мы имеем дело с арифметическим корнем. Следовательно, обе части данного неравенства неотрицательны, и его можно возвести в квадрат, не нарушая равносильности неравенства».
Чтобы убедиться, что неравенство решено неверно, подставим в данное неравенство, например, x = 10.
Проанализируем ход приведенных здесь рассуждений. Они доказывают, что если неравенство (4) удовлетворяется при некоторых x, то обе части его можно возвести в квадрат, и тогда x > 2. Однако отсюда не следует обратное, что исходное неравенство удовлетворяется при всех x > 2.
Присутствие в неравенстве (4) квадратного корня накладывало на неизвестное определенные ограничения, которые оказались разрушенными после возведения неравенства (4) в квадрат.
Трехчлен x^2 - 55х + 250 вначале стоял под знаком квадратного корня, а потому должен был быть неотрицательным. После возведения неравенства (4) в квадрат это ограничение исчезло; теперь ничто не мешает трехчлену стать отрицательным. Даже наоборот, в этом случае неравенство x^2 - 55х + 250 < (x - 14)^2
Чтобы подкоренное выражение оставалось неотрицательным, мы должны добавить к полученному после возведения в квадрат неравенству требование x^2 - 55x + 250 >= 0, т. е. x <= 5, x >= 50. Из полупрямой x > 2 оказались выделенными две ее части: 2 < x <= 5, x >= 50.
Но и теперь еще не все. Достаточно подставить в исходное неравенство значение x = 4, и мы убедимся, что оно не удовлетворяется. Дело в том, что при возведении в квадрат мы устранили еще одно ограничение, которое присутствовало в неравенстве (4). В левой части первоначального неравенства стоит квадратный корень, т. е. неотрицательное число. Чтобы это неравенство удовлетворялось, правая его часть x– 14 должна быть больше нуля. Итак, надо добавить ограничение x - 14 > 0, которое присутствовало в исходном неравенстве и оказалось разрушенным после возведения в квадрат.
Таким образом, после возведения данного неравенства в квадрат, мы должны позаботиться о сохранении всех ограничений, которые присутствуют в данном неравенстве. Неравенство (4) нужно было заменить системой
решая которую мы нашли бы, что
т. е. x >= 50.
В каждом из неравенств 6—9 освободитесь от иррациональности, не нарушая равносильности:
6.
7.
8.
9.
Показательные и логарифмические неравенства. При решении показательных и логарифмических неравенств пользуются следующими свойствами:
1. Неравенство f(x)(x) > 1, где f(x) > 0, равносильно совокупности двух систем неравенств:
или системе неравенств
1а. Неравенство f(x)(x) < 1, где f(x) > 0, равносильно совокупности двух систем неравенств:
или системе неравенств
2. Неравенство logf(x)(x) > 0 равносильно совокупности двух систем неравенств: