Сборник задач по математике с решениями для поступающих в вузы
Шрифт:
9.3.
9.4.
9.5.
9.6.
9.7.
9.8.
9.9.
9.10. Найдите действительные решения уравнения
|x^2 - 3 · x/2 - 1| = -x^2 - 4x +
и определите, при каких значениях оно имеет единственное [6] действительное решение.
9.11. Решите систему
9.12. Найдите все действительные значения k, при которых решение системы
6
Два совпадающих решения считаются за одно.
удовлетворяет условию: x > 1/k, у > 0.
9.13. В области действительных чисел решите систему
9.14. При каких значениях а система
имеет действительные решения? Найдите эти решения.
Решите системы:
9.15.
9.16.
9.17.
9.18.
9.19. Числа x, у и z удовлетворяют системе уравнений
где а, b, с не равны друг другу. Найдите x^3 + у^3 + z^3.
Решите системы:
9.20.
9.21.
9.22.
9.23.
9.24. Найдите все действительные решения системы
9.25. Найдите одно решение системы
Решите
9.26.
9.27.
9.28.
9.29.
9.30. Найдите все значения а и b, при которых система
имеет единственное решение (а, b, x, у — действительные числа).
9.31. Найдите все значения а, при которых система
имеет хотя бы одно решение и всякое ее решение удовлетворяет уравнению x + у = 0 (а, x, у — действительные числа).
9.32. Найдите все значения а, при которых система
имеет хотя бы одно решение для любого значения b (а, b, x, у — действительные числа).
9.33. Найдите все значения а и b, при которых система уравнений
имеет единственное решение (x, у, а, b — действительные числа, x > 0).
9.34. Решите систему
в области действительных чисел.
9.35. Решите уравнение
|6 - |x - 3| - |x + 1|| - аx - 5а = 4
при всех действительных значениях параметра а.
9.36. При всех действительных а решите уравнение
9.37. Решите уравнение
9.38. Решите систему уравнений
Глава 10
Алгебраические неравенства
О доказательстве неравенств. Доказать неравенство можно следующими способами, которые мы продемонстрируем на примере неравенства
1. От противного. Предположим противное:
Тогда
что невозможно.
2. По определению неравенства. Составим разность левой и правой частей и определим ее знак: