Чтение онлайн

на главную

Жанры

Фейнмановские лекции по гравитации
Шрифт:

Фейнман написал детальный отчёт о своих результатах только много позднее [Feyn 72] в двух статьях для тома в честь 60-летнего юбилея Джона Уилера. Эти статьи никогда не были бы написаны, если бы не было постоянного приставания одного из нас (К. Торна). По взаимному соглашению Торн звонил Фейнману домой раз в неделю в заранее условленное время для того, чтобы напомнить ему, что необходимо поработать над статьёй для праздничного тома в честь Джона Уилера. Это продолжалось до тех пор, пока статьи не были полностью завершены. Было ясно, что Фейнман вернулся к квантовой гравитации только с некоторыми страданиями и сожалением.

Одна из целей Фейнмана состояла в том, чтобы навести порядок в вопросе о перенормируемости этой теории. На конференции в Варшаве он говорил, что он не уверен в том, что эта теория может быть перенормируема, но в разделе 16.2 он приводит более сильное утверждение: ”Я полагаю, что эта теория не перенормируема.” Даже это утверждение Фейнмана звучит сейчас для нас удивительно осторожно. В любом случае Фейнман всегда относился неохотно к тому, чтобы использовать перенормируемость в качестве критерия для оценки теории, и он открыто заявляет в разделе 16.2, что он не знает, является ли неперенормируемость ”действительно существенным возражением” .

Заключение

Любая книга по гравитации, подготовленная более 30 лет тому назад, неизбежно сегодня оказывается устаревшей, по крайней мере, в некоторых аспектах. Ясно, что эта книга не является исключением. Более того, мы считаем, что эти лекции не оправдали бы собственных ожиданий Фейнмана даже в то время, в которое они читались. У него была надежда, что чтение этого курса поможет привести его работу по квантовой гравитации к связному заключению, но этого не произошло. В конце академического года (1962 - 63) стало очевидным для студентов, что Фейнман чувствует себя обескураженным и расстроенным. Таким образом, в соответствии с собственными пожеланиями Фейнмана лекции (от 17 до 27), которые были нацелены на обсуждение вопросов квантовой гравитации, не включены в эту книгу.

Однако, мы думаем, что в этой книге, содержащей лекции 1 - 16, много того, что будет оценено по достоинству физиками, студентами, историками и почитателями Фейнмана. Более того, эти лекции очень веселы. Многие отрывки предлагают мимолётный взгляд великого ума, обладающего большой глубиной обсуждения проблемы, и бросающие вызов вопросы, возникающие из рассмотрения проблемы в истинном свете. Фейнман размышлял долго и напряжённо в течении нескольких лет, однако по этому вопросу он публиковал крайне мало. Это умные лекции и обладают характерной (для творчества Фейнмана) ясностью, и эти лекции являются содержательным добавлением к его уже опубликованному наследию, появление которых можно было бы приветствовать.

Мы благодарны Джиму Бардину, Стенли Дезеру, Брайсу Де Витту, Уилли Фаулеру, Стиву Фраутчи, Джуди Гудстейн, Джиму Хартлю, Ико Ибену, Бобу Крайчману, Чарльзу Мизнеру, Фернандо Мориниго, Джиму Пиблсу, Аллану Сеадеджу и Биллу Вагнеру за ценную помощь, которая была использована при подготовке этого предисловия.

КАЛТЕХ,

май 1995 года

Джон Прескилл и Кип С. Торн

Квантовая гравитация

Фейнман читал свои лекции по гравитации в КАЛТЕХ’e в 1962 - 63 годах, в конце того периода, на который он часто ссылался как на его ”фазу гравитации”. Основной мотивировкой для проведения исследований по гравитации в то время был его интерес к квантовой гравитации. Он говорил мне в 1980 году, что он думал в 50-х годах, что следствия квантовой гравитации могли быть тем ”куском торта”, который стоил того, чтобы над ним поработать. В конце концов, гравитация на самом деле слаба. После грандиозного успеха пертурбативной Квантовой Электродинамики, он рассчитывал, что нет особой нужды разрабатывать что-либо, что находится за пределами первого порядка теории возмущений. Конечно, он ожидал, что могли бы быть трудности при определении согласованной квантовой теории (например, величина гравитационной константы является препятствием для перенормировки). Тем не менее, его идея заключалась не в том, чтобы попытаться построить полную и согласованную теорию квантования и затем получить результаты, а вместо этого двигаться в другом направлении. Суть состоит в том, чтобы вычислить пертурбативные амплитуды для определённых процессов, таких как комптоновское рассеяние гравитоном, а затем биться над любыми интересными трудностями, которые могут возникать одна за другой. По определению ”интересные” трудности могут быть новыми и необычными проблемами, связанными с гравитацией, которые не возникали ранее в квантовой теории поля. Таким образом, первоначально Фейнман игнорировал ультрафиолетовые расходимости и вопросы перенормировки и только позже напряжённо размышлял над этими проблемами. В конце концов, отсутствие формулировки перенормируемости привело к отказу от пертурбативной квантовой теории. Но характерно, что ”план атаки” Фейнмана привёл его к важному открытию в теории поля, а именно к необходимости введения ковариантных духов для того, чтобы сохранить унитарность в однопетлевом приближении (см. обсуждение этого вопроса во введении, написанном Прескиллом и Торном).

Эти лекции появились более 30 лет назад. Мы можем посмотреть на некоторые аспекты анализа Фейнмана вопросов квантовой гравитации и взглянуть в тех направлениях, в которых были проведены исследования.

Связь геометрии и квантовой теории поля

Стандартный и исторический подход к классической гравитации состоит в том, чтобы начать с рассмотрения принципа эквивалентности и развивать в дальнейшем геометрическую точку зрения. Фейнман гордился тем, что он редко следовал стандартному подходу. В углу доски в своём служебном кабинете он написал ”Что я не могу создать, я не понимаю.” Это выражение фактически оставалось нетронутым в углу этой доски в течении более 7 лет. Я впервые увидел его в конце 1980 года, и оно всё ещё оставалось там в феврале 1988 года (см. [Feyn 89]). Таким образом, не удивительно, что Фейнман воссоздаёт общую теорию относительности, исходя не с геометрической точки зрения. Практическая сторона такого подхода состоит в том, что не стоит с самого начала изучать некоторые выкрутасы (”fancy-schmanzy”, как он любил называть это) дифференциальной геометрии для того, чтобы выучить физику гравитации. (На самом деле, существует только необходимость изучить некоторые аспекты квантовой теории поля). Тем не менее, когда конечной целью стала проблема квантования гравитации, Фейнман почувствовал, что геометрическая интерпретация как раз и находится у него на пути. С точки зрения теории поля можно было бы действительно избежать определения таких вещей, как физическое значение квантовой геометрии, флуктуирующая топология, пространственно-временная пена и т.д., а вместо этого посмотреть геометрическое понимание после квантования. (См., например, вопрос Сакса и ответ Фейнмана в работе [Feyn 63b]). Фейнман определённо чувствовал, что геометрическая интерпретация является ”удивительной” (раздел 8.4), но тот факт, что безмассовое поле спина 2 может интерпретироваться как метрика, было просто ”совпадением”, которое "может быть понято как представление некоторого вида калибровочной инвариантности”.

Сейчас у нас есть геометрическая интерпретация классических калибровочных теорий, таких к ах электродинамика и теория Янга-Миллса (см., например, [Yang 77]). Векторные потенциалы

A

являются коэффициентами связности на главном расслоённом пространстве, где структурная группа есть калибровочная группа (U(1) для электромагнетизма, SU(2) для полей Янга - Миллса и SU(3) для классической хромодинамики). Напряжённости поля F (т.е. электрические и магнитные поля в электродинамике) являются компонентами кривизны, ассоциированными со связностями (потенциалами). Заряженное вещество, которое поле связывает, ассоциируется с векторным расслоением (см., например, [DrMa 77]). Отсюда следует, что интуитивная догадка Фейнмана о связи между геометрией и калибровочной инвариантностью оказывается правильной. С точки зрения фейнмановского интеграла по траекториям, квантовая электродинамика и квантовая хромодинамика равнозначно интегралам по пространству связностей на главном расслоённом пространстве. В то время, как может быть показано, что геометрическая интерпретация калибровочных полей не помогает решить проблемы квантовой электродинамики (КЭД) или квантовой хромодинамики (КХД) (т.е. адекватным образом вычислить или оценить эти интегралы), это несомненно приводит ко многим полезным интуитивным догадкам о топологических аспектах этих теорий (например, неоднозначность Грибова, инстантоны, вакуумный угол и топологически неэквивалентные вакуумы) и к построению новых калибровочных теорий типа Янга -Миллса с топологическими массами.

Спин гравитона и антигравитация

Выгодность теоретико-полевого развития теории гравитации состоит в том, что то, что (находящийся в оболочке) гравитон является безмассовым и имеет спин 2, получается непосредственно без того, чтобы начинать с полностью согласованной, полностью ковариантной теории, т.е. без привлечения Принципа Общей Ковариантности. Это выглядит как построение теории гравитации снизу вверх, вместо того, чтобы строить сверху вниз, используя полный геометрический аппарат. Развитие теории начинается в разделе 2.3 лекций и продолжается в разделах 3.1 - 3.4. Краткое изложение этого аргумента состоит в следующем.

В квантовой теории поля точечных частиц сила между двумя частицами передаётся путём обмена виртуальными (или безоболочечными) частицами. С каждой силой ассоциируется заряд. Заряженные частицы чувствуют силу путём связи или взаимодействия с частицами, которые переносят эту силу. Наиболее привычным примером является электродинамика. Частицы, которые чувствуют силу, переносят электрический заряд. Электромагнитная сила передаётся путём обмена фотонами со спином 1. Сами фотоны незаряжены и, следовательно, напрямую не взаимодействуют друг с другом. Получившиеся в результате полевые уравнения являются линейными. В КХД, теории сильного взаимодействия, построенной из калибровочной теории Янга - Миллса (сильное взаимодействие ответственно за сдерживание вместе нуклонов и, таким образом, за существование атомных ядер), этот заряд называется цветом. Фундаментальные частицы, которые чувствуют сильное взаимодействие, являются цветными кварками, а частицы, которые переносят силу, называются глюонами. Сами глюоны являются частицами с цветовым зарядом, отсюда следует, что в отличие от фотона, они могут напрямую взаимодействовать друг с другом, и результирующие полевые уравнения являются нелинейными. Заряд, связанный с гравитацией, есть масса, которая, как мы полагаем, исходя из специальной теории относительности, должна быть эквивалентна энергии. Так как мы знаем почти всё, что имеет энергию, то гравитация должна взаимодействовать со всем. Частица, которая переносит гравитационную силу, называется гравитоном. Так как гравитон имеет энергию, гравитоны должны непосредственно взаимодействовать друг с другом.

Если теория поля используется для описания гравитации, тогда эта теория должна воспроизводить Закон Всемирного Тяготения Ньютона в соответствующем статическом нерелятивистском пределе, т.е. мы должны вновь получить

F

=-

Gmm

r^2

(K.1)

путём обмена гравитоном между частицами 1 и 2, разделёнными расстоянием r в соответствующем пределе. Как хорошо известно, гравитационная сила - дальнодействующая (сила пропорциональна 1/r^2, а потенциал пропорционален 1/r), отсюда следует, что находящийся в оболочке или свободный изолированный гравитон должен быть безмассовым, точно также, как и для случая фотона. Однако, в отличие от случая электромагнетизма, одинаковые заряды в гравитации притягиваются.

Популярные книги

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Генерал Скала и ученица

Суббота Светлана
2. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Генерал Скала и ученица

Шведский стол

Ланцов Михаил Алексеевич
3. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Шведский стол

Восход. Солнцев. Книга VIII

Скабер Артемий
8. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга VIII

Темный Кластер

Кораблев Родион
Другая сторона
Фантастика:
боевая фантастика
5.00
рейтинг книги
Темный Кластер

Этот мир не выдержит меня. Том 1

Майнер Максим
1. Первый простолюдин в Академии
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Этот мир не выдержит меня. Том 1

Попаданка для Дракона, или Жена любой ценой

Герр Ольга
Любовные романы:
любовно-фантастические романы
7.17
рейтинг книги
Попаданка для Дракона, или Жена любой ценой

Искатель боли

Злобин Михаил
3. Пророк Дьявола
Фантастика:
фэнтези
6.85
рейтинг книги
Искатель боли

Осторожно! Маша!

Юнина Наталья
Любовные романы:
современные любовные романы
6.94
рейтинг книги
Осторожно! Маша!

Я снова граф. Книга XI

Дрейк Сириус
11. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я снова граф. Книга XI

Приручитель женщин-монстров. Том 4

Дорничев Дмитрий
4. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 4

Эфир. Терра 13

Скабер Артемий
1. Совет Видящих
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эфир. Терра 13

Последний попаданец 8

Зубов Константин
8. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 8