Чтение онлайн

на главную

Жанры

Фейнмановские лекции по гравитации
Шрифт:

Фейнман в разделе 14.4 продолжает свои рассуждения словами: ”После того, как мы исследовали статические решения, мы можем повернуть наше внимание к полной динамической задаче. Дифференциальные уравнения выглядят ужасающе”. Фактически, Фейнман выписал сам такие уравнения. Они впоследствии были выведены независимо и решены численно М.А. Подурцом [Podu 64] в СССР1 и Майклом Мейем и Ричардом Уайтом [MaWh 66] в США, с использованием потомков компьютерных алгоритмов, которые были разработаны для создания ядерного оружия. Этот результат хорошо известен: звёзды, которые испытывают релятивистскую неустойчивость Фейнмана - Чандрасекара, взрываются внутрь для того, чтобы образовать чёрные дыры.

1 Вид уравнений, решаемых по разностной схеме, которая была составлена В.Л.Загускиным, в работе М.А. Подурца следует признать неудачным из-за наличия в них корневой особенности, и их нельзя использовать в случаях, когда сжатие может смениться расширением. Впоследствии эта особенность была устранена более удачным выбором переменных [ННП 78*]. (Прим. перев.)

В течении примерно 10 лет после прочтения Фейнманом лекции 14 вращающиеся сверхзвёзды остаются сильным соперником на рынке всевозможных моделей квазаров и сильных радиоисточников, характеризующихся огромным энерговыделением. Постепенно в 1970-х годах модели, основанные на быстро вращающихся сверхмассивных чёрных дырах, приобрели господство; и сегодня сверхмассивные звёзды обычно рассматриваются как достаточно привлекательные, но нестационарные объекты в ядрах галактик, движущиеся (по эволюционной траектории) в сторону образования сверхмассивных чёрных дыр, что впоследствии приводит к их преобладанию над сверхмассивными звёздами [Thor 94].

Чёрные дыры

Понятие чёрной дыры только появлялось в начале 60-х годов, и взгляды Фейнмана могли быть слегка позади концепций, существовавших в то время. Таким образом, наиболее серьёзно устаревшими являются вероятно лекции 11 и 15, в которых рассматривается решение Шварцшильда и его приложения.

В некотором смысле то, что мы теперь называем чёрной дырой, уже было известно в 1916 году, когда Карл Шварцшильд нашёл своё решение полевого уравнения Эйнштейна [Schw 16]. Но в течении десятилетий большая часть физиков упорно сопротивлялись таким ”возмутительным” приложениям решения Шварцшильда. (Эта часть физиков включала в себя и самого Эйнштейна, который написал в 1939 году вызывающую сожаление статью, в которой доказывал, что чёрные дыры не могут существовать [Eins 39]). Даже замечательный и вполне определённый анализ (опубликованный также в 1939 году) гравитационного коллапса, проведённый Оппенгеймером и Снайдером [OpSn 39], оказывал удивительно малое влияние на научную общественность в течении многих лет. Оппенгеймер и Снайдер изучили коллапс сферически симметричной ”звезды” с однородной плотностью и нулевым давлением и заметили, что такой взрыв звезды внутрь, как это видит стационарный наблюдатель, который остаётся вне коллапсирующей звезды, будет медленно приближаться и, в конце концов, застынет, когда поверхность звезды приблизится к сфере Шварцшильда. Кроме того, они ясно показали, что никакого такого ”застывания” коллапса не видели бы наблюдатели, движущиеся вместе с коллапсирующей материей, такие наблюдатели должны были бы пересечь критическую поверхность за конечное собственное время, и с того времени они не могли бы послать сигнал, который мог бы достигнуть наблюдателя, находящегося вне коллапсирующей звезды. Это предельное отличие между описанием в двух различных системах отсчёта доказывается исключительно сложно для лёгкого восприятия. Эти два описания не были приведены в соответствие до 1958 года, когда Давид Финкельштейн [Fink 58] проанализировал решение Шварцшильда, используя координатную систему, что позволило наглядно представить себе одновременно мировые линии полевых частиц, которые падают внутрь критической поверхности, и мировые линии выходящих фотонов, которые застывают на критической поверхности. Этот анализ открыл необычную ”структуру причинности” пространства Шварцшильда: ничто, находящееся внутри ”горизонта”, не может избежать того, чтобы быть затянутым внутрь сферы всё меньшей и меньшей площади. Появившаяся картина указала (некоторым учёным), что как только звезда падает через критическую поверхность, её сжатие, которое приводит к образованию пространственно-временной сингулярности, становится неизбежным. То, что это на самом деле верно независимо от любых предположений, идеализирующих картину, таких как сферическая симметрия и нулевое давление, было доказано Роджером Пенроузом в 1964 году [Penr 65].

Таким образом, время чтения лекций Фейнмана по гравитации является неудачным. ”Золотая эпоха” исследований чёрных дыр только начиналась, в течение следующего десятилетия было достигнуто значительное понимание сути физики этого явления. Эти результаты, которые не могли быть предугаданы в 1962 - 63 году, полностью преобразовали изучение общей теории относительности и способствовали созданию новой дисциплины - релятивистской астрофизики.

В 1962 - 63 году взгляды Фейнмана на решение Шварцшильда находились под большим влиянием Джона Уилера. Уилер в течении многих лет считал, что заключения Оппенгеймера и Снайдера не могут вызывать доверия; он находил их физически неразумными. Даже в 1958 году он отстаивал то, что если при анализе гравитационного коллапса использовать более реалистичное уравнение состояние, то могут быть получены качественно отличные результаты [HWWh 58]. (Эта точка зрения оказалась менее надёжной, когда структура причинности геометрии чёрной дыры стала соответствующим образом понята). Постепенно, тем не менее, Уилер пришёл к тому, чтобы принять неизбежность гравитационного коллапса, приводящего к образованию чёрной дыры в соответствии с заключениями Оппенгеймера и Снайдера. (Этому сдвигу точки зрения Уилера способствовали результаты Мартина Крускала [Krus 60], который независимо от Финкельштейна, также прояснил структуру причинности чёрной дыры; фактически, столь значительная статья Крускала была в большой степени написана Уилером, хотя некоторые интуитивные догадки и вычисления принадлежали Крускалу). Но в течение тех лет, когда он был скептически настроенным, Уилер реагировал довольно специфическим способом, он редко упоминал результаты Оппенгеймера - Снайдера в своих публикациях. Это обнаруживается, когда в разделе 11.6 Фейнман делает замечание о том, что стоило бы поинтересоваться изучением коллапса пыли. Он кажется не знающим того, что Оппенгеймер и Снайдер детально изучили коллапс пыли 23 года тому назад! В разделе 15.1 он рассуждает, основываясь на (неверных!) размышлениях лекции 14, что звезда, образованная из ”реального вещества”, не может коллапсировать внутрь её критической поверхности.

Фейнман приводит несколько ссылок на программу ”геометродинамики”, которую Уилер развивал, начиная с середины 50-х годов, и всё ещё продолжал её развивать (может быть менее энергично) в 1962 году; см. [Whee 62]. Уилер и его соавторы надеялись проинтерпретировать элементарные частицы как геометрические объекты, возникающие из (квантовых версий) классических решений гравитационных полевых уравнений при отсутствии материи. Уилер в особенности был увлечён концепцией ”заряда без заряда”; он отмечал, что если силовые линии электрического поля захватываются нетривиальной топологией ”кротовой норы” в пространстве, то каждая горловина кротовой норы должна была бы появляться как точечный заряженный объект для наблюдателя, чьё разрешение оказывается недостаточным для того, чтобы ощутить эту малюсенькую горловину [MiWh 57]. Уилер подчёркивал, что решение Шварцшильда обладает пространственными сечениями, в которых две асимптотически плоских области связываются узкой горловиной, и таким образом, реализует модель геометрии кротовой норы, которую Уилер представлял себе.

Фейнман явным образом был влюблён в понятие кротовой норы, он описывает эти идеи кратко в разделе 11.5 и затем в разделах 15.1 и 15.3. Заметим, что Фейнман называет звезду, ограниченную внутри своего гравитационного радиуса, ”кротовой норой”; термин ”чёрная дыра” не был придуман (Уилером) до 1967 года. Для того, что мы называем теперь ”горизонтом” чёрной дыры, Фейнман использует более старый термин ”сингулярность Шварцшильда”. Это особенно неудачный оборот речи, поскольку при этом имеется риск внести путаницу с действительной сингулярностью, областью в центре чёрной дыры, где имеется бесконечная кривизна. Фейнман никогда подробно не обсуждает эту настоящую сингулярность.

К 1962 году структура причинности решения Шварцшильда была достаточно хорошо понята. Она достаточно хорошо пояснена Фаллером и Уилером в работе [FuWh 62], т.е. в работе, на которой, как упоминает Фейнман, основано изложение в разделе 15.1. (В этой работе, одной из очень немногих, цитируемых в лекциях Фейнмана, использовались координаты Крускала для того, чтобы построить полную, аналитически продолженную геометрию Шварцшильда, и представляется ”диаграмма Крускала”, которая явно демонстрирует свойства времениподобных и нулевых геодезических). Фейнман цитирует основной вывод: решение Шварцшильда не является на самом деле кротовой норой того рода, которым интересуется Уилер, поскольку горловина кротовой норы является на самом деле динамическим объектом и сожмётся до того, как любая частица сможет пересечь эту горловину. Тем не менее, в работе Фаллера и Уилера не упоминались никакие более широкие приложения этой структуры причинности для проблемы гравитационного коллапса, и Фейнман не демонстрирует понимание таких приложений.

Можно также увидеть из комментариев Фейнмана, сделанных в разделах 15.2 и 15.3, что он не понимал структуры причинности решения (”Райсснера - Нордстрема”), описывающего заряженную чёрную дыру, которая рассматривалась в работе Грейвса и Брилла 1960 года [GrBr 60]. Приведём замечание ”… не представляется немыслимым, что может оказаться, что отражённая частица вылетает наружу раньше, чем она влетает внутрь!”. Фактически, в аналитически продолженной геометрии геодезическая проходит в ”новую вселенную” за конечное собственное время скорее, чем выходит обратно из чёрной дыры (см., например, [НаЕ1 73]). Тем не менее, известно, что внутренняя часть этого решения является неустойчивой при действии общих возмущений [ChHa 82]; для ”реалистического” случая заряженной чёрной дыры, образуемой в процессе гравитационного коллапса, ситуация является качественно отличной и остаётся всё ещё не понятой до конца, хотя кажется в высшей степени вероятным, что ядро дыры является настолько сингулярным, что ничто не может перейти в ”новую вселенную”, по крайней мере в области общей теории относительности [BBIP 91].

Гравитационные волны

Очень давно в 1957 году на конференции в Чапел Хилле ещё было возможно проводить серьёзное обсуждение того, предсказывает ли теория Эйнштейна существование гравитационного излучения [DeWi 57]. Это недоумение возникло в значительной степени потому, что это довольно тонкая материя, как определить строго энергию, переносимую гравитационной волной, затруднение состоит в том, что гравитационная энергия не может быть выражена через интеграл локально измеряемой плотности.

На этой конференции в Чапел Хилле Фейнман направил этот вопрос в прагматическое русло, описывал, как антенна гравитационных волн могла бы быть в принципе сконструирована так, чтобы она могла бы поглощать энергию, ”переносимую” этой волной [DeWi 57, Feyn 57]. В лекции 16 он явным образом приводит к описанию варианта такого прибора, когда эти записки резко обрываются: ”Следовательно, мы покажем, что они [гравитационные волны] могут на самом деле нагревать стену, так что нет вопроса относительно содержания энергии в гравитационных волнах”. Вариант антенны Фейнмана был опубликован Бонди [Bond 57] вскоре после конференции в Чапел Хилле (заметим иронически, что когда-то Бонди высказывался скептически относительно реальности гравитационных волн), но Фейнман никогда ничего не публиковал на эту тему. Наилучшее оставшееся описание этой работы содержится в письме к Виктору Вайсскопфу, написанному в феврале 1961 года [Feyn 61]. Это письмо содержит кое-что из того же материала, что и был изложен в лекции 16, но затем Фейнман продвигается несколько дальше и выводит формулу для мощности, излучаемой в квадрупольном приближении (этот результат также цитировался на конференции в Чапел Хилле). Затем это письмо описывает фейнмановский детектор гравитационных волн: это просто две бусинки, свободно скользящие (но с малым трением) по твёрдому стержню. Когда волны проходят через стержень, атомные силы оставляют длину стержня фиксированной, но соответствующее расстояние между двумя бусинками осциллирует. Таким образом, две бусинки трут стержень, выделяя в результате тепло. (Фейнман включил это письмо в Вайсскопфу в материал, который он распространял среди студентов, слушающих его курс лекций).

Популярные книги

Кодекс Охотника. Книга XXIII

Винокуров Юрий
23. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXIII

Кодекс Охотника. Книга XXIV

Винокуров Юрий
24. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXIV

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

Особняк Ведьмы. Том 1

Дорничев Дмитрий
1. Особняк
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Особняк Ведьмы. Том 1

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4

Власть силы-1

Зыков Виталий Валерьевич
5. Дорога домой
Фантастика:
фэнтези
8.11
рейтинг книги
Власть силы-1

Сердце Дракона. Предпоследний том. Часть 1

Клеванский Кирилл Сергеевич
Сердце дракона
Фантастика:
фэнтези
5.00
рейтинг книги
Сердце Дракона. Предпоследний том. Часть 1

Смертник из рода Валевских. Книга 1

Маханенко Василий Михайлович
1. Смертник из рода Валевских
Фантастика:
фэнтези
рпг
аниме
5.40
рейтинг книги
Смертник из рода Валевских. Книга 1

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Сахар на дне

Малиновская Маша
2. Со стеклом
Любовные романы:
современные любовные романы
эро литература
7.64
рейтинг книги
Сахар на дне

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Не грози Дубровскому! Том IX

Панарин Антон
9. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том IX

Сфирот

Прокофьев Роман Юрьевич
8. Стеллар
Фантастика:
боевая фантастика
рпг
6.92
рейтинг книги
Сфирот

Если твой босс... монстр!

Райская Ольга
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Если твой босс... монстр!