Чтение онлайн

на главную

Жанры

Сборник задач по математике с решениями для поступающих в вузы

Ваховский Евгений Борисович

Шрифт:

Поэтому одновременно |z1| <= 1 и z1 >= 1, т. е. имеется единственная возможность z1 = 1, что достигается при y = 1, а следовательно, при x = 1. Подставим значение x = 1 в исходную систему и убедимся, что это ее решение.

Для z2 получим

sin x/2 = 2x, где x >= -2. (11)

При x > 0

решений уравнение (11) не имеет, поскольку тогда 2x > 1, а |sin x/2| <= 1.

Значение x = 0 тоже решением не является, в чем убеждаемся непосредственной проверкой.

Когда -2 <= x < 0, решений тоже нет, так как при этих x значения 2положительны, а значения sin x/2 <= 0.

Ответ. x = 1.

17.5. Первообразная F(x) для функции f(x) = 6х^2 + 2x + 6 равна:

F(x) = 2x^3 + x^2 + 6х + С, (12)

где константа С будет определена. Соответственно

f'(x) = 12x + 2. (13)

В точке касания x0 > 0,7 должны иметь место следующие соотношения:

т. е. получаем систему

Уравнение (15) после упрощений принимает вид

Из его двух корней x0 = 2/3 и x0 = 1 условию (16) удовлетворяет только второй. Подставляем x0 = 1 в уравнение (14) и находим, что С = 5. Окончательно

F(x) = 2x^3 + x^2 + 6х + 5.

Остается сформировать данное в условии задачи неравенство

которое примет вид

Разложим числитель на множители

и воспользуемся методом интервалов (рис. P.17.5). Ограничение x > 0,7 относилось только к расположению точки касания графиков f(x) и F(x). Здесь его учитывать не нужно.

Ответ. x (-; -1/6) [ 1/2 ; +).

17.6. По условию разность xy

такова, что может быть основанием логарифма. Поэтому возможна замена 1 = logxy (xy), а данное в условии неравенство равносильно такому:

Так как (xy) — основание логарифма, то либо 0 < xy < 1, либо xy > 1. Получим совокупность двух систем, которую затем несколько преобразуем, чтобы удобнее было перейти к графическим изображениям:

Последние два неравенства первой системы можно упростить, поскольку имеет место условие xy > 0. Получим

Решение первой системы показано на рис. P.17.6, а, решение второй — на рис. P.17.6, б, а решение совокупности — на рис. P.17.6, в.

Внимание! Интервалы оси абсцисс (0, 1) и (1, +) принадлежат множеству решений. Остальные точки границы ему не принадлежат.

17.7. Найдем решения неравенства

(x– |x|)^2 + (y– |y|)^2 <= 4 (17)

для каждого квадранта отдельно.

Пусть одновременно x >= 0, y >= 0. Тогда |x| = x, |y| = y. Неравенство (17) приобретет вид 0 <= 4, т. е. оно удовлетворяется при всех x и y из первого квадранта.

Когда x <= 0, y >= 0, точки (x, y) лежат во втором квадранте и на его границе. Тогда |x| = -x, |y| = y и неравенство (17) приобретет вид

(2x)^2 <= 4, т. е. x^2 <= 1, или -1 <= x <= 0,

так как мы рассматриваем значения x <= 0. Это будет полоса шириной 1, расположенная во втором квадранте параллельно оси Оу (рис. P.17.7).

Аналогично в четвертом квадранте получим полосу шириной 1 параллельную оси Ox.

В четвертом квадранте x <= 0, y <= 0 и мы получим из (17) неравенство

х^2 + y^2 <= 1,

т. е. ему удовлетворяют точки четвертого квадранта, лежащие внутри и на границе круга x^2 + y^2 = 1.

Нанесем на рис. P.17.7 точки прямой y = -x. Значения, удовлетворяющие неравенству x + y <= 0, будут лежать под этой прямой и на ней. Нас интересует площадь фигуры, покрытой штриховкой. Эта фигура состоит из двух прямоугольных треугольников с катетами 1 (в сумме они образуют квадрат со стороной 1) и четверти круга, имеющего радиус 1.

Поделиться:
Популярные книги

Меняя маски

Метельский Николай Александрович
1. Унесенный ветром
Фантастика:
боевая фантастика
попаданцы
9.22
рейтинг книги
Меняя маски

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Лорд Системы 13

Токсик Саша
13. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 13

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

"Дальние горизонты. Дух". Компиляция. Книги 1-25

Усманов Хайдарали
Собрание сочинений
Фантастика:
фэнтези
боевая фантастика
попаданцы
5.00
рейтинг книги
Дальние горизонты. Дух. Компиляция. Книги 1-25

Месть Пламенных

Дмитриева Ольга
6. Пламенная
Фантастика:
фэнтези
6.00
рейтинг книги
Месть Пламенных

Как я строил магическую империю 6

Зубов Константин
6. Как я строил магическую империю
Фантастика:
попаданцы
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 6

Идеальный мир для Лекаря 24

Сапфир Олег
24. Лекарь
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Идеальный мир для Лекаря 24

Внешняя Зона

Жгулёв Пётр Николаевич
8. Real-Rpg
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Внешняя Зона

Архил…? Книга 3

Кожевников Павел
3. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
7.00
рейтинг книги
Архил…? Книга 3

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

Барон ненавидит правила

Ренгач Евгений
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон ненавидит правила

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь