Сборник задач по математике с решениями для поступающих в вузы
Шрифт:
Ответ. 1 + /4.
17.8. Уравнение прямой, проходящей через точки В и D, имеет вид y = 8 - x, а уравнение прямой AC есть 2y = x + 4. Решая эти два уравнения в системе, найдем x = y = 4, т. е. E(4; 4).
Проведем все построения, описанные в указании II на с. 201 (рис. P.17.8).
Дополнительно проведем ЕL || CK,
SABCDE = SFGCK - SCKD - SELD - SELH + SAFH - SAGB.
Каждый из треугольников — прямоугольный с известными катетами.
Ответ. 36.
17.9. Пусть x + y = u, y– x = v. Тогда
а множество решений этой системы проецируется на прямую u = 2. Другими словами, нас интересуют все значения v, при каждом из которых система неравенств (18), (19) имеет хотя бы одно решение. Пусть u — независимая переменная. Она будет абсциссой, а f(u) — ординатой для исследуемой нами плоскости. Величина v — параметр. График функции f(u) — парабола, если v^2 - 1 /= 0. Она обращена ветвями вверх при v^2 - 1 > 0 и ветвями вниз при v^2 - 1 < 0. Отдельно нужно рассмотреть случай v^2 - 1 = 0.
Итак, перед нами три случая.
1. v^2 - 1 < 0, т. е.
– 1 < v < 1. Парабола обращена ветвями вниз. При достаточно больших значениях u > 1 она принимает отрицательные значения. Поэтому в плоскости (u, v) в проекции на прямую u = 2 мы получим интервал -1 < v < 1.
2. v^2 - 1 = 0. Если v = -1, то f(u) 2 и отрицательных решений нет. Если v = 1, то f(u) = 12u, где u > 1. Отрицательных значений, удовлетворяющих системе (18), (19), в этом случае тоже нет.
3. Когда v^2 - 1 > 0, т. е. либо v < -1, либо v > 1 ветви параболы обращены вверх. Правее прямой u = 1 парабола может принимать отрицательные значения в двух случаях:
а) уравнение f(u) = 0 имеет два корня, и при этом абсцисса u0 вершины (u0; v0) параболы превосходит 1, т. е.
После простых преобразований:
Окончательно
Система не имеет решений, так как одновременно все три ограничения не удовлетворяются;
б) абсцисса u0 вершины (u0; v0) не больше 1, но f(1) меньше нуля:
После преобразований получим
Обобщим все рассмотренные варианты. Условиям удовлетворяют два интервала значений v, проекции которых в плоскости (u, v) на прямую u = 2 не пересекаются:
v (-3, -2) (-1, 1).
Когда мы вернемся к переменным x и y, ситуация не изменится, так как замена
не ведет к изменению расстояний между соответственными точками в старой и новой системе координат.
Основная трудность этой задачи состояла в том, что исследование пришлось вести одновременно в двух плоскостях (u, f(u)) и (u, v). К тому же, в конечном счете, нас интересует третья плоскость (x, y).
Ответ. 2.
17.10. Если x1 и x2 — целочисленные корни данного уравнения, то x1 + x2 = а + 3, откуда следует, что а = x1 + x2– 3 — целое число. Корни данного уравнения равны
отсюда
т. е.
а^2 -2a + 1 = п^2 + 20, т. е. (а– 1)^2 - п^2 = 20,
или
(а– n– 1)(а + n– 1) = 20.
Остается рассмотреть варианты, когда каждая из скобок равна целочисленным множителям числа 20. Начнем со случая
Сложив эти два уравнения, получим уравнение
2a– 2 = 21,
не имеющее целочисленных решений.
Можно сделать более общий вывод: если в правой части других пар уравнений типа (20) и (21) есть один нечетный множитель числа 20, то целочисленных решений y системы аналогичной (20), (21) нет. Остается рассмотреть только случаи
Нетрудно убедиться, что первая и вторая системы приводят к одному значению а = 7, а третья и четвертая — к значению а = -5.