Чтение онлайн

на главную

Жанры

Сборник задач по математике с решениями для поступающих в вузы

Ваховский Евгений Борисович

Шрифт:

Подкоренное выражение можно преобразовать следующим образом:

(1 - а^2 + b^2)^2 - 4b^2 = (1 - а^2 + b^2 - 2b)(1 - а^2 + b^2 + 2b) = [(1 - b)^2 - а^2][(1 + b)^2 - а^2] = (1 - bа)(1 - b + а)(1 + bа)(1 + b + а).

Так

как а > b > 0 и а + b < 1, то каждый из четырех множителей положителен и дискриминант тоже положителен.

Если перед корнем выбран знак плюс, то u и v положительны. Докажем, что v > 0. Имеем а^2 - b^2 = (аb)(а + b) < аb < аb + 2b = аb < 1. Следовательно, 1 - а^2 + b^2 > 0 и, обращаясь к выражению для v, находим, что v > 0. Так как а > b, то очевидно, что и u > 0.

Если перед корнем выбран знак минус, то нужно проверить, что u и v положительны. Так как а > b, то проверку достаточно провести для v, которое меньше u.

Неравенство

 очевидно.

Нетрудно проследить, что в процессе решения системы уравнений относительно u и v при условии, что u и v положительны, мы не нарушали равносильности.

Способ 2. Эту систему естественно было бы решать с помощью подстановки x = sin , y = sin , где 0 < < /2, 0 < < /2. Такая подстановка возможна, поскольку из имеющихся в условии ограничений легко получить, что 0 < x < 1, 0 < y < 1. Получим систему

Складывая и вычитая уравнения этой системы, найдем

Так как по условию 0 < а + b < 1 и 0 < аb < 1, а на и были наложены ограничения 0 < < /2, 0 < < /2, то можно написать

или

Из первой системы получим

Найдем sin 1 и sin 1:

где = arcsin (а + b), = arcsin (аb). (При

выборе знаков перед корнями мы здесь и в дальнейшем принимаем во внимание ограничения на и : 0 < < /2, 0 < < /2.) Продолжим преобразования:

Нетрудно убедиться в том, что

[1 - (а + b)^2][1 - (аb)^2] = (1 - а^2 + b^2)^2 - 4b^2.

Аналогично найдем sin 1, а также sin 2 и sin 2.

Ответ. Если а > b > 0, а + b < 1, то система имеет два решения:

9.30. Наряду с решением x1, y1, z1 система обязательно имеет решение -х1, -у1, z1. Поэтому у системы будет единственное решение только в том случае, когда x = y = 0.

Подставляя x = y = 0 в исходную систему, получим

откуда либо а = b = 2, либо а = b = -2.

Проверим, действительно ли при найденных значениях а и b система имеет единственное решение.

Если а = b = 2, то из первого уравнения находим

xyz = 2 - z.

Подставляя во второе, получим квадратное уравнение относительно z:

z^2 - 3z + 2 = 0,

корни которого z1 = 1, z2 = 2.

При z = 1 получим систему

которая, как легко проверить, имеет четыре решения.

Таким образом, значения параметров а = b = 2 не удовлетворяют условию задачи.

Если а = b = -2, то из первого уравнения найдем

xyz = -2 - z.

Подставляем во второе:

z^2 + z– 2 = 0,

откуда z1 = -2, z2 = 1.

При z = -2 приходим к системе

имеющей единственное решение x = y = 0. При z = 1 получаем систему

Поделиться:
Популярные книги

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10

Возвращение Низвергнутого

Михайлов Дем Алексеевич
5. Изгой
Фантастика:
фэнтези
9.40
рейтинг книги
Возвращение Низвергнутого

Стражи душ

Кас Маркус
4. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Стражи душ

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Безымянный раб

Зыков Виталий Валерьевич
1. Дорога домой
Фантастика:
фэнтези
9.31
рейтинг книги
Безымянный раб

Чайлдфри

Тоцка Тала
Любовные романы:
современные любовные романы
6.51
рейтинг книги
Чайлдфри

Мастер 4

Чащин Валерий
4. Мастер
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Мастер 4

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Везунчик. Проводник

Бубела Олег Николаевич
3. Везунчик
Фантастика:
фэнтези
6.62
рейтинг книги
Везунчик. Проводник

Менталист. Революция

Еслер Андрей
3. Выиграть у времени
Фантастика:
боевая фантастика
5.48
рейтинг книги
Менталист. Революция

Чужое наследие

Кораблев Родион
3. Другая сторона
Фантастика:
боевая фантастика
8.47
рейтинг книги
Чужое наследие

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Путь (2 книга - 6 книга)

Игнатов Михаил Павлович
Путь
Фантастика:
фэнтези
6.40
рейтинг книги
Путь (2 книга - 6 книга)

Смерть может танцевать 2

Вальтер Макс
2. Безликий
Фантастика:
героическая фантастика
альтернативная история
6.14
рейтинг книги
Смерть может танцевать 2